
Microservices and DevOps

DevOps and Container Technology
Test Doubles

Henrik Bærbak Christensen



Testability

• Testability: Concerned with the ease with which the 

software can be made to demonstrate its faults

• Techniques:

– Testing:

– Review

• Manual: Structured and systematic human reading of programs

• Static analysis: let programs analyze your program

– Formal verification: make profs that you program works

CS@AU Henrik Bærbak Christensen 2



Failure and Defects

• What we observe when testing

• Why we observe it – the cause

• På dansk: Fejl og fejl ☺

CS@AU Henrik Bærbak Christensen 3



Terminology

• Test Case

• Which means:

– We have to isolate some part of the software – the ‘unit’

– We have to be able to provide input to the unit

– We have to be able to execute the unit with the input and observe 

the output (which requires a specific context)

– We have to know what output to expect (oracle)

CS@AU Henrik Bærbak Christensen 4

(input, output, unit under test)



Conclusion: Testing Issues

• Definition: The Testability Input Issue

– Embody the issues involved in providing comprehensive and 

deterministic input to the unit under test in a reliable and 

reproducible way

• Definition: The Testability Unit Isolation Issue

– Embody the issues involved in testing a unit under test in 

isolation in a comprehensive environment in a reliable and 

reproducible way

• Definition: The Testability Output issue

– Embody the issues involved in recording the output from a unit 

under test and asserting the correctness in a reliable and 

reproducible way
CS@AU Henrik Bærbak Christensen 5



Testability and MSDO

I did not sign up for a test fagpakke,

did I?



Yes you did ☺

• DevOps Culture [Rouan Wilsenach, 2015] 

(https://www.martinfowler.com/bliki/DevOpsCulture.html)

– We need

• Fast feedback

• Quality Code

• Automation

– Main technique

• Automated regression testing

CS@AU Henrik Bærbak Christensen 7

https://www.martinfowler.com/bliki/DevOpsCulture.html


So – in General

• All features/quality attributes should be demonstrated 

through automated testing in this course

• Write JUnit code to validate at unit testing level

– Using test doubles to control indirect input and ouput

• Write JUnit+TestContainer code to validate at integration 

testing level

– Use real-life containers to handle deterministic input and output

– (And test double services or test doubles for non-determ.)

CS@AU Henrik Bærbak Christensen 8



Test Doubles



Motivation

• Thorough testing requires software units to be tested in 

isolation – to create a test harness/environment where 

defects/complexity in other units do not 

invalidate/complicate our testing.

• The basic idea:

– Replace the unit(s) that the ‘unit under test’ collaborates with, 

with simpler and more controllable units

CS@AU Henrik Bærbak Christensen 10



Terminology

• These ‘replacement units’ have many names

– Stubs, mocks, test drivers, skeletons, …

– (I see a trend that many call everything ‘mocks’ because that is 

the fancy term ☺. But it is as wrong, as calling a banana for apple 

just because both are fruits…)

• Gerard Meszaros defines a clearer

terminology by classifying the 

various uses of ‘replacements’...

– Find it on www

CS@AU Henrik Bærbak Christensen 11



xUnit Pattern: Test Double

• “Superclass”: Test Double

– SUT: System under test (=UUT)

– DOC: Depended-on Component

• When?

– Slow tests

– DOC is

• not available

• not under test control

• has side-effects

CS@AU Henrik Bærbak Christensen 12



Terminology

• indirect output

– the output a UUT 

generates, not visible by 

our driver, but passed as 

parameters, protocols 

used, etc., to the DOCs

• indirect input

– the input a Unit Under Test 

receives, not by parameter 

passing, instance 

variables, etc., but from 

results computed by DOCs. Indirect Input

Indirect Output

CS@AU Henrik Bærbak Christensen 13



Test Double

• Solution:

– Replace DOC with a double

• like stunt doubles in movies...

– Requires:

• that this is possible!!!

GoF’s 1st principle: 

Program to an interface...

-

Dependency Injection!

CS@AU Henrik Bærbak Christensen 14



Double classification

• Meszaros classify several types of doubles according to 

the specific testing perspective

CS@AU Henrik Bærbak Christensen 15



The Short Version



Test Stub

• Context

– In many circumstances, the environment or context in which the 

system under test (SUT) operates very much influences the 

behavior of the SUT. To get good enough control over the indirect 

inputs of the SUT, we may have to replace some of the context 

with something we can control, a Test Stub. 

• Example:

– Test that the cooler starts

when the temperature is 6

degrees 

• Stub the temperature sensor

with a fixed return value of 6

CS@AU Henrik Bærbak Christensen 17

http://xunitpatterns.com/SUT.html
http://xunitpatterns.com/SUT.html
http://xunitpatterns.com/indirect%20input.html
http://xunitpatterns.com/SUT.html


Test Spy

• Context:

– In many circumstances, the environment or context in which the 

SUT operates very much influences the behavior of the SUT. To 

get good enough visibility of the indirect outputs of the SUT, we 

may have to replace some of the context with something we can 

use to capture these outputs of the SUT. 

• Example:

– Test that the cooler starts

when the temperature is 6

degrees 

• Replace cooling element with

spy, that records when ‘start()’

is called; verify that it was called

CS@AU Henrik Bærbak Christensen 18

http://xunitpatterns.com/SUT.html
http://xunitpatterns.com/SUT.html
http://xunitpatterns.com/indirect%20output.html
http://xunitpatterns.com/SUT.html
http://xunitpatterns.com/SUT.html


Combining

• Then our test case of the Cooling, c, may look like

– Configure ‘stub = new TemperatureSensorStub(6);’

– Configure ‘spy = new CoolingElementSpy();’

– Dep inject into Cooler

• cooler = new Cooler(stub, spy);

– Execute test

• cooler.regulateTemperature(); // read temp, if temp>6, start cooling

– Validate that cooling element’s start method was called

• assertThat(spy.lastInvokedMethod(), is(”start()”))

CS@AU Henrik Bærbak Christensen 19



Mock Object

• Context:

– A test double that verifies 

the indirect outputs

• Usually fail fast semantics

• Use a mock

library

– Mockito, …

CS@AU Henrik Bærbak Christensen 20



Fake Object

• Context:
– The SUT often depend on other components or systems. The 

interactions with these other components may be necessary but the 

side-effects of these interactions as implemented by the real depended-

on component (DOC), may be unnecessary or even detrimental. A Fake 

Object is a much simpler and lighter weight implementation of the 

functionality provided by the DOC without the side effects we choose to 

do without. 

CS@AU Henrik Bærbak Christensen 21

http://xunitpatterns.com/SUT.html
http://xunitpatterns.com/DOC.html
http://xunitpatterns.com/DOC.html


Microservice Context

• Meszaros’ terminology is founded in a ‘single system’ 

assumption

– I inject a FakeDB implementation of the Database interface, and 

test my Inventory implementation using that…

• But the terminology is independent of the connector 

between the client and the server

– In-process method call connector

– Out-of-process REST call connector

• So – the stub can be

– Java stub implementation 

– A remote service that provides stub values (ala Mountebank)

CS@AU Henrik Bærbak Christensen 22



Summary

• Test Doubles allow you to get access to, inspect, and 

verify indirect input and output

• Stub: focus on indirect input

• Spy: focus on indirect output (record/verify)

• Mock: focus on indirect output (fail fast)

– frameworks to generate doubles dynamically

• Fake object: light-weight semi-realistic behaviour

CS@AU Henrik Bærbak Christensen 23



The Long Version



Test Stub



Test Stub

• Context

– In many circumstances, the environment or context in which the 

system under test (SUT) operates very much influences the 

behavior of the SUT. To get good enough control over the indirect 

inputs of the SUT, we may have to replace some of the context 

with something we can control, a Test Stub. 

• Examples:

– ?

CS@AU Henrik Bærbak Christensen 26

http://xunitpatterns.com/SUT.html
http://xunitpatterns.com/SUT.html
http://xunitpatterns.com/indirect%20input.html
http://xunitpatterns.com/SUT.html


Test Stub Examples

• Typical examples are

– Stubbing sensors or hardware

• In a meteorological system it is important to test wind calculations 

over north when the wind direction changes from 359 degrees to 0 

degrees.

– Stubbing random behaviour

• A dice must be put under test control

CS@AU Henrik Bærbak Christensen 27



Stub variations

• Responder

– used to inject valid indirect inputs: happy paths

• Saboteur

– used to inject invalid indirect inputs

• Temporary Test Stub

– a stand in for a not-yet-implemented DOC – the first TDD 

production code implementation is always of this kind.

• this is what I called a stub in my book...

• Entity Chain Snipping

– replace a network of objects with a single one

CS@AU Henrik Bærbak Christensen 28



Example 1

• In Net4Care we generate XML documents representing 

telemedicine measurements

– Nancy has measured her weight to 77.0 kg

• The format is PHMR, a document with a unique ID, 

generated at the time of creation
– <id root="2.16.840.1.113883.3.4208" extension="aa2386d0-79ea-11e3-981f-0800200c9a66"/>

• However, comparing with ‘expected’ does not like random 

IDs 

• Solution

– A UUIDStrategy interface, with a responder implementation

CS@AU Henrik Bærbak Christensen 29



Example 2

• In EcoSense Karibu the daemons (responsible for fetching 

messages from our MessageQueue, converting them to JSON, and 

storing them in MongoDB), must react properly on MQ 

exceptions (ie. do a ”fail over”)

– Introduce a PollingConsumer interface

• A RabbitMQ implementation

• A Saboteur implementation – that will throw exceptions

CS@AU Henrik Bærbak Christensen 30



Test Stub

• Conclusion:

– the primary purpose of the stub is

– to control the UUT’s input space

• that is

– we get testing control over the input space + environment in order 

to specify test cases

• = (input, environment, expected output).

– usually has methods/means for the test to specify the returned 

indirect inputs

CS@AU Henrik Bærbak Christensen 31



Test Spy



Test Spy

• Context:

– In many circumstances, the environment or context in which the 

SUT operates very much influences the behavior of the SUT. To 

get good enough visibility of the indirect outputs of the SUT, we 

may have to replace some of the context with something we can 

use to capture these outputs of the SUT. 

CS@AU Henrik Bærbak Christensen 33

http://xunitpatterns.com/SUT.html
http://xunitpatterns.com/SUT.html
http://xunitpatterns.com/indirect%20output.html
http://xunitpatterns.com/SUT.html
http://xunitpatterns.com/SUT.html


Test Spy Examples

• A Test Spy can

– record the parameters passed to it

• verify indirect computed output equals expected

– the order in which DOC methods were called

• verify the protocol between UUT and DOC

• A Test Spy does not fail, it merely records interaction.

• The Spy is inspected after the test execution in order to 

verify that indirect output was correct.

CS@AU Henrik Bærbak Christensen 34



Implementation notes

• Test Spy inspection variations:

• Retrieval interface:

– The spy must have additional methods to extract the stored 

indirect output

• Self Shunt:

– The test case class itself implements the DOC interface and is 

thus feed the indirect output directly to be cached in local 

variables

• Inner Test Double

– use an inner anonymous class as self shunt

CS@AU Henrik Bærbak Christensen 35



Examples

• A classic example is an abstraction that communicates 

state changes via the Observer pattern

– observer notification is an (important!) side-effect of state-

changing method calls, but it is not externally visible: it is indirect 

output

– register a SpyListener that counts the number of observer 

updates received.

CS@AU Henrik Bærbak Christensen 36



Examples

• Gerry: An artificial Backgammon player

– for all valid moves given board and dice

• make move, compute value of board

• if (value > bestvalue) { remember this move; }

• But does it compute the proper moves? Is it really the 

best move that is taken?

• movehook.considerMove(move);

• normally considerMove is the empty method.

CS@AU Henrik Bærbak Christensen 37



Examples

• EcoSense Karibu daemons of course log special 

situations like detected failures of nodes. 

– A SpyLogger is helpful as it

• Verifies that log messages are indeed output

• Verifies that failure situations are handled properly

CS@AU Henrik Bærbak Christensen 38



Fake Object



Fake Object

• Context:
– The SUT often depend on other components or systems. The 

interactions with these other components may be necessary but the 

side-effects of these interactions as implemented by the real depended-

on component (DOC), may be unnecessary or even detrimental. A Fake 

Object is a much simpler and lighter weight implementation of the 

functionality provided by the DOC without the side effects we choose to 

do without. 

CS@AU Henrik Bærbak Christensen 40

http://xunitpatterns.com/SUT.html
http://xunitpatterns.com/DOC.html
http://xunitpatterns.com/DOC.html


Fake Object

• Stub versus Fake Object?

– Fake Object has “realistic” behaviour, a “lightweight version of the 

real implementation”

– Fake Object is not instrumented/hard-coded with the indirect 

inputs, instead the indirect inputs comes from previous 

interactions with the SUT

• Not “return 47”, but “return simpleDatastructure[index]”, whose 

contents is the result of previous interactions (store operations) with 

the SUT

– Less focus on testing aspects of the SUT, more focus on making 

it work.

CS@AU Henrik Bærbak Christensen 41



Types

• Fake Database

– replace database with in-memory HashTables

• In-Memory Database

– semi-real database but not disk-based

• (SQLite is brilliant in this respect ☺)

• Fake Web Service

– hard-coded or table-driven web server

• Fake Service Layer

– fake the domain layer

CS@AU Henrik Bærbak Christensen 42



Examples

• EcoSense Karibu daemons store documents in 

MongoDB but that is way to heavy for automated testing

– StorageStrategy interface with Fake Database

CS@AU Henrik Bærbak Christensen 43



Examples

• Net4Care stores PHMR documents in Cross-Enterprise 

Document Share XDS.b repositories (SOAP web 

services) which is incredible heavy weight

– XDS.b interface with a In-Memory database (SQLite 

implementation)

– Allowed us to TDD the Net4Care framework

– Allowed us to supply ‘local lightweight’ servers without the big 

overhead of getting real XDS.b server running

CS@AU Henrik Bærbak Christensen 44



Mock Object



Mock Object

• Context:

– A test double that verifies 

the indirect outputs

CS@AU Henrik Bærbak Christensen 46



Mock Object Workings

• Mock objects are somewhat more complex to define but 

are powerful to verify UUT behaviour with respect to the 

DOC.

– Define Mock object with same interface as DOC

– Configure mock with expectations

• values to return (like test stub)

• the methods that must be called

– including sequence/protocol and call count

– expected parameters

– The mock will fail if these expectations are not met

• fail fast!

– Thus test driver needs not verify anything!

CS@AU Henrik Bærbak Christensen 47



Mock Libraries

• Mocks are special in the sense that they are dynamically 

created by a Mock library

CS@AU Henrik Bærbak Christensen 48



Considerations

• Mock objects must be programmed in advance

– thus we must be able to predict UUT indirect output in advance –

a hard-core whitebox requirement...

– But pretty OK in a TDD context where you actually program the 

production code along with the test code.

• Mock objects are responsible for failing

– thus exceptions thrown must be able to pass out of the UUT

• may not be possible if it is embedded in a EJB container or similar... 

CS@AU Henrik Bærbak Christensen 49



MicroService Context

It is all so in-memory right?



Meszaros

• Meszaros’ terminology is founded in a ‘single system’ 

assumption

– I inject a FakeDB implementation of the Database interface, and 

test my Inventory implementaion using that…

• But the terminology is independent of the connector 

between the client and the server

– In-process method call connector

– Out-of-process REST call connector

• So – the stub can be

– Java stub implementation 

– A remote service that provides stub values (ala Mountebank)

CS@AU Henrik Bærbak Christensen 51



Summary

• Testing units in isolation is important

– unit and integration testing

– test-driven development

• Units have more inputs and outputs than visible from the 

parameter list and instances variables

– especially true in object-oriented programming

– indirect inputs: data from DOCs

– indirect output: data to DOCs

CS@AU Henrik Bærbak Christensen 52



Summary

• Test Doubles allow you to get access to, inspect, and 

verify indirect input and output

• Stub: focus on indirect input

• Spy: focus on indirect output (record/verify)

• Mock: focus on indirect output (fail fast)

– frameworks to generate doubles dynamically

• Fake object: light-weight semi-realistic behaviour

CS@AU Henrik Bærbak Christensen 53


